3,987 research outputs found

    Sigma models with off-shell N=(4,4) supersymmetry and noncommuting complex structures

    Full text link
    We describe the conditions for extra supersymmetry in N=(2,2) supersymmetric nonlinear sigma models written in terms of semichiral superfields. We find that some of these models have additional off-shell supersymmetry. The (4,4) supersymmetry introduces geometrical structures on the target-space which are conveniently described in terms of Yano f-structures and Magri-Morosi concomitants. On-shell, we relate the new structures to the known bi-hypercomplex structures.Comment: 20 pages; v2: significant corrections, clarifications, and reorganization; v3: discussion of supersymmetry vs twisted supersymmetry added, relevant signs corrected

    Generalized Kahler Geometry from supersymmetric sigma models

    Full text link
    We give a physical derivation of generalized Kahler geometry. Starting from a supersymmetric nonlinear sigma model, we rederive and explain the results of Gualtieri regarding the equivalence between generalized Kahler geometry and the bi-hermitean geometry of Gates-Hull-Rocek. When cast in the language of supersymmetric sigma models, this relation maps precisely to that between the Lagrangian and the Hamiltonian formalisms. We also discuss topological twist in this context.Comment: 18 page

    Gauged (2,2) Sigma Models and Generalized Kahler Geometry

    Get PDF
    We gauge the (2,2) supersymmetric non-linear sigma model whose target space has bihermitian structure (g, B, J_{\pm}) with noncommuting complex structures. The bihermitian geometry is realized by a sigma model which is written in terms of (2,2) semi-chiral superfields. We discuss the moment map, from the perspective of the gauged sigma model action and from the integrability condition for a Hamiltonian vector field. We show that for a concrete example, the SU(2) x U(1) WZNW model, as well as for the sigma models with almost product structure, the moment map can be used together with the corresponding Killing vector to form an element of T+T* which lies in the eigenbundle of the generalized almost complex structure. Lastly, we discuss T-duality at the level of a (2,2) sigma model involving semi-chiral superfields and present an explicit example.Comment: 33 page

    The Semi-Chiral Quotient, Hyperkahler Manifolds and T-duality

    Full text link
    We study the construction of generalized Kahler manifolds, described purely in terms of N=(2,2) semichiral superfields, by a quotient using the semichiral vector multiplet. Despite the presence of a b-field in these models, we show that the quotient of a hyperkahler manifold is hyperkahler, as in the usual hyperkahler quotient. Thus, quotient manifolds with torsion cannot be constructed by this method. Nonetheless, this method does give a new description of hyperkahler manifolds in terms of two-dimensional N=(2,2) gauged non-linear sigma models involving semichiral superfields and the semichiral vector multiplet. We give two examples: Eguchi-Hanson and Taub-NUT. By T-duality, this gives new gauged linear sigma models describing the T-dual of Eguchi-Hanson and NS5-branes. We also clarify some aspects of T-duality relating these models to N=(4,4) models for chiral/twisted-chiral fields and comment briefly on more general quotients that can give rise to torsion and give an example.Comment: 31 page

    Analysis of high quality superconducting resonators: consequences for TLS properties in amorphous oxides

    Get PDF
    1/f1/f noise caused by microscopic Two-Level Systems (TLS) is known to be very detrimental to the performance of superconducting quantum devices but the nature of these TLS is still poorly understood. Recent experiments with superconducting resonators indicates that interaction between TLS in the oxide at the film-substrate interface is not negligible. Here we present data on the loss and 1/f1/f frequency noise from two different Nb resonators with and without Pt capping and discuss what conclusions can be drawn regarding the properties of TLS in amorphous oxides. We also estimate the concentration and dipole moment of the TLS.Comment: 8 pages, 5 figure

    Generalized Kahler manifolds and off-shell supersymmetry

    Full text link
    We solve the long standing problem of finding an off-shell supersymmetric formulation for a general N = (2, 2) nonlinear two dimensional sigma model. Geometrically the problem is equivalent to proving the existence of special coordinates; these correspond to particular superfields that allow for a superspace description. We construct and explain the geometric significance of the generalized Kahler potential for any generalized Kahler manifold; this potential is the superspace Lagrangian.Comment: 21 pages; references clarified and added; theorem generalized; typos correcte

    Properties of hyperkahler manifolds and their twistor spaces

    Full text link
    We describe the relation between supersymmetric sigma-models on hyperkahler manifolds, projective superspace, and twistor space. We review the essential aspects and present a coherent picture with a number of new results.Comment: 26 pages. v2: Sign mistakes corrected; Kahler potential explicitly calculated in example; references added. v3: Published version--several small clarifications per referee's reques

    T-duality and Generalized Kahler Geometry

    Full text link
    We use newly discovered N = (2, 2) vector multiplets to clarify T-dualities for generalized Kahler geometries. Following the usual procedure, we gauge isometries of nonlinear sigma-models and introduce Lagrange multipliers that constrain the field-strengths of the gauge fields to vanish. Integrating out the Lagrange multipliers leads to the original action, whereas integrating out the vector multiplets gives the dual action. The description is given both in N = (2, 2) and N = (1, 1) superspace.Comment: 14 pages; published version: some conventions improved, minor clarification

    A pedestrian approach to the high energy limits of branes and other gravitational systems

    Get PDF
    In this article we study limits of models that contain a dimensionful parameter such as the mass of the relativistic point-particle. The limits are analogous to the massless limit of the particle and may be thought of as high energy limits. We present the ideas and work through several examples in a (hopefully) pedagogical manner. Along the way we derive several new results.Comment: 19 pages, 1 figur
    • 

    corecore